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Abstract The dynamic response analysis combined

with the generalized return-mapping algorithm is

applied to the integration algorithms of viscoplastic

constitutive relations including the effect of the shear

band. The kinematic hardening model based on

modified and extended soil model with isotropic

strain-hardening–softening is employed. In this

paper, the TESRA (temporary effect of strain rate

and acceleration) model is employed for the nonlin-

ear viscosity of sand. The constitutive equations of

rate-dependent plasticity originally proposed by Du-

vaut–Lions are employed as the base of the solutions.

Liquefaction of a buried pipe is analyzed by finite

element method by employing the above mentioned

constitutive relations and the calculated results are

compared with experimental results. The dynamic

response analysis is applied to the solutions of the

problems. The kinematic hardening–softening visco-

plastic constitutive relations for geomaterials are

promising for the predictions of cumulative defor-

mations and liquefaction of the buried pipe. A great

deal of experimental results indicate that the stress is

a unique function of irreversible strain and its rate.

Keywords Plasticity � Kinematic hardening �
Viscoplasticity � Dynamic relaxation �
Return mapping

1 Introduction

In order to guarantee a mesh-objective consumption

of energy, the strain softening modulus which is a

function of element size, is made. This kind of shear

banding model can incorporate a characteristic length

of shear band in the material modeling based on

physical and experimental observations of strain

localization. The numerical simulation of the quasi-

static deformations of geomaterials characterized by

the viscoplastic constitutive model is of great signif-

icance and has been intensively studied in the past.

Various viscoplastic material models have been

proposed for the analysis of rate-dependent failure

in geomaterials, shear banding and creep behavior.

Among them, a widely used viscoplastic model is the

Perzyna model (Perzyna 1966). This model is also

known as the overstress model. The characteristics of

the overstress model have been addressed by various

authors (Simo et al. 1988; Simo and Hughes 1998).

Simo et al. (1988) has pointed out that the Perzyna-

type models are, in general, not meaningful when the

elastic domain is defined by several surfaces inter-

secting in a non-smooth fashion.
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In this paper, a viscoplastic jump kinematic

hardening model of geomaterials is developed. This

model is based on the modified and extended soil

model of isotropic strain hardening and softening

elasto-plastic constitutive equation. The constitutive

model is applied to the boundary value problems such

as cyclic behavior of geotechnical problems. The

explicit type dynamic relaxation method (Tanaka and

Kawamoto 1988) is used for the pseudo-static cyclic

triaxial test simulation and the explicit or implicit-

explicit dynamic response analysis is applied to the

time integration of liquefaction problem of a buried

pipe. The generalized return-mapping algorithm

(Ortiz and Simo 1986) is applied to the integration

algorithms of viscoplastic constitutive relations. The

return mapping algorithm is, especially, crucial

because the jump kinematic hardening model devel-

oped here has intersecting yield lines.

2 Dynamic Response Analysis

2.1 Explicit Method

Solution to systems of nonlinear equations is obtained

as

P� Pinit ¼ F and P ¼
X

N

Z

vol

BTrdv ð1Þ

where P is the internal force vector, Pinit is the nodal

force vector due to initial stresses, F is the external

force vector, BT is the strain–displacement transfor-

mation matrix, N is the number of elements in finite

element discretization, r is the stress at Gauss point

in each element, and vol is the volume of each

element. The solution to the above governing equa-

tion can be obtained by achieving the steady state

response of the following dynamic equation of

motion

MDaþ Cvþ P� Pinit ¼ F ð2Þ

where MD is the diagonalized mass matrix, C is the

damping matrix, which is a vector for critically

damped dynamic relaxation, v is the velocity vector,

and a is the acceleration vector.

Applying the central difference method to Eq. 2

and replacing the damping by the following relation

C ¼ aMD ð3Þ

the following equation can be derived;

qnþ1 ¼
1

1þ 0:5aDt

Dt2

MD

ðF� Pþ PinitÞt þ 2qn

�

� ð1� 0:5DtÞqn�1

�
:

ð4Þ

Here, qn is the displacement vector at time n, Dt is

the time increment and a is the damping ratio which

is the most critical value to be determined when

dynamic relaxation algorithm is applied.

As dynamic response computation is based on an

explicit integration scheme, it suffers from the

stability problem. The condition for stable analysis

can be expressed as

Dt� b
l

Vc

ð5Þ

where Dt is the time required to pass the compression

wave from one node to adjacent node, b is the

stability factor (b\ 1.0), and l is the minimum

distance between the adjacent nodal point for an

element and Vc is the compression wave velocity of

the medium.

2.2 Implicit-Explicit Method

The implicit method (Bathe 1996) is used to a part of

the stiff structures and the explicit method without

stiffness matrix is applied to other parts of soil mass.

Consequently both methods are used simultaneously

and the Newmark scheme is employed. The algo-

rithms are described as follows.

~qnþ1 ¼ qn þ Dtvn þ Dt2ð1� 2bÞan

�
2 ð6Þ

~vnþ1 ¼ vn þ Dtð1� cÞan ð7Þ

where vn is the velocity vector and an is the

acceleration vector at time n, and c and b are

constants. In a time increment, the displacement is

simultaneously solved from the explicit and implicit

effective stiffness matrix using the Skyline solver.

K� ¼ M= Dt2
� �

þ cCT= Dtbð Þ þ KT ~qnþ1

� �
implicitð Þ

ð8Þ

K� ¼ M= Dt2b
� �

explicitð Þ ð9Þ
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K�Dq ¼ W ð10Þ

where M is the lump mass, KT is the tangential

stiffness matrix, CT is the critical damping matrix and

W is the residual force. The residual force is

evaluated by the equation.

W ¼ fnþ1 �Manþ1 � P ~qnþ1; ~vnþ1

� �
ð11Þ

where fn?1 is the external force vector, P is the

internal force vector. The displacement, velocity and

acceleration of next step are calculated by the

following equations.

qnþ1 ¼ ~qnþ1 þ Dq ð12Þ

anþ1 ¼ qnþ1 � ~qnþ1

� ��
Dt2b
� �

ð13Þ

vnþ1 ¼ ~vnþ1 ¼ Dtcanþ1: ð14Þ

3 Elasto-Plastic Constitutive Equation

A simplified and generalized version of mesh size-

dependent softening modulus method is applied in

this study. A material model for a real granular

material is used with the features of nonlinear pre-

peak, pressure-sensitivity of the deformation, strength

characteristics, non-associated flow characteristics,

post-peak strain softening and strain-localization into

a shear band with a specific width.

The yield function (f) and the plastic potential

function (U) are given by

f ¼ aI1 þ
�r

g hLð Þ
¼ 0 ð15Þ

U ¼ a0I1 þ �r ¼ 0 ð16Þ

where

a ¼ 2 sin /ffiffiffi
3
p
ð3� sin /Þ

a0 ¼ 2 sin wffiffiffi
3
p
ð3� sin wÞ

ð17Þ

where I1 is the first invariant (positive in tension) of

deviatoric stress and �r is the second invariant of

deviatoric stress. With the Mohr–Coulomb model,

g(hL) takes the following form

g hLð Þ ¼
3� sin /

2
ffiffiffi
3
p

cos hL � 2 sin hL sin /
ð18Þ

where / is the mobilized friction angle and hL is the

Lode angle. The frictional hardening–softening func-

tions expressed as follows are used.

For hardening regime;

aðjÞ ¼ 2
ffiffiffiffiffiffiffi
jef
p

jþ ef

� �m

ap j� efð Þ ð19Þ

and for softening regime;

aðjÞ ¼ ar þ ap � ar

� �
exp

j� ef

er

� �2
( )

j� efð Þ

ð20Þ

where m, ef and er are the material constants and ap

and ar are the values of a at the peak and residual

states. Yoshida et al. (1995) indicated that shear band

width was constant depending on mean particle size

of soil. By introducing a strain localization parameter

s in the following additive decomposition of total

strain increment, the introduction of shear banding in

the numerical analysis is achieved and given as

follows

deij ¼ dee
ij þ sdep

ij; s ¼ Fb=Fe ð21Þ

where Fb is the area of a single shear band in each

element, and Fe is the area of an element.

The residual friction angle (/r) and Poisson’s ratio

(v) are chosen based on the data from the test of air-

dried Toyoura sand. The peak friction angle (/p) is

estimated from the empirical relations based on the

plane strain compression test and triaxial test on

Toyoura sand. A dilatancy angle W is defined by

Eqs. 22 and 23.

sin w ¼ sin /� sin /0r
1� sin u sin /0r

ð22Þ

/0r ¼ /r 1� b exp � j
ed

� �2
( )" #

ð23Þ

where b and ed are material constants.

The jump kinematic hardening model considering

the cumulative deformation by cyclic loading is

developed based on modified and extended soil

model of isotropic strain-hardening–softening prop-

erty in order to take into account the cyclic behavior.

Within bounding surface, plastic behavior is assumed

and the hardening modulus is much greater compared

to the plastic behavior outside the bounding surface.

The hardening function is given by Eq. 24. In this

equation, j0 is a plastic parameter and is cleared to

zero at a reversal point and af is a material constant.
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The dilatancy angle w0 is given by Eqs. 25 and 26,

where rf in Eq. 25 is the reduction factor for dilatancy

(Fig. 1).

aiy j0ð Þ ¼ af

2
ffiffiffiffiffiffiffiffi
j0ef

p

j0 þ ef

� �m

ap ð24Þ

a0id j0ð Þ ¼ aiy � ap

� �
rf ð25Þ

sin w0 ¼ 3
ffiffiffi
3
p

aid

2þ
ffiffiffi
3
p

aid

: ð26Þ

4 Viscoplastic Constitutive Model

The constitutive equations of rate-dependent plastic-

ity (Simo et al. 1988) originally proposed by Duvaut–

Lions are as follows.

rv ¼ gC_evp ¼ r� �r ð27Þ

q
: ¼ 1

g
q� �q½ � ð28Þ

r ¼ rf eir
� �
þ rv eir; _eir

� �
ð29Þ

where g is the fluidity parameter, q is the internal

variables, �r and �q are the rate independent solutions,

C is the elastic modulus. Eq. 27 can be rewritten in

incremental form as follows.

Deir ¼ Dtnþ1

g
rnþ1 � �rnþ1ð ÞC�1: ð30Þ

After some calculation, the following equation can

be obtained

rnþ1 ¼
gCDenþ1 þ grn þ Dtnþ1�rnþ1

Dtnþ1 þ g

¼
grtrial

nþ1 þ Dtnþ1�rnþ1

Dtnþ1 þ g
:

ð31Þ

Similarly, Eq. 28 is transformed to the following

equation.

qnþ1 ¼
qn þ Dt

�
g�qnþ1

1þ Dt=g
: ð32Þ

The intensive study of geomaterials indicates that

the stress r is a unique function of irreversible strain

and its rate (Tatsuoka et al. 2002). Following the

framework of the three component model (Fig. 2),

Tatsuoka et al. (2002) proposed the New Isotach and

TESRA model

r ¼ rf eir
� �
þ rv eir; _eir

� �
ð33Þ

where eir is the irreversible strain, _eir is the irrevers-

ible strain rate, rf is the time independent (elasto-

plastic) stress, rv is the time dependent stress.

The New Isotach model takes the following form.

rv ¼ rf � g _eir
� �

ð34Þ

where

gð_eirÞ ¼ a 1� exp 1� _eir

_eir
r

� �m	 
� �

is a viscosity function.

From this equation, the equivalent fluidity param-

eter can be obtained as follows.

g ¼
rfa 1� exp 1� _eir

_eir
r
þ 1

� �mn oh i

C_eir
: ð35Þ

Fig. 1 Kinematic hardening model on p plane (Mohr–Cou-

lomb model takes irregular hexagonal shape)

Fig. 2 Viscoplastic model
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Introducing the following decay function, Tats-

uoka et al. (2002) proposed the TESRA model as

gdecay eir � s
� �

¼ r
ðeir�sÞ
1 : ð36Þ

These New Isotach and TESRA model for one

dimensional viscous stress of soils are generalized to

three dimensional stress by applying the relation.

r ¼ raana � na ð37Þ

where na is the principal direction. In this computa-

tion, the dynamic relaxation method combined with

the generalized return mapping algorithm is applied

to obtain the elasto-plastic stress. The obtained stress

is transformed to principal stress. Then the nonlinear

viscous stress in each direction and raa are computed

using equivalent fluidity parameter. By applying

Eq. 37, the normal three dimensional stress compo-

nents can be obtained.

5 Dynamic Progressive Failure

of a Embankment Dam

A two-dimensional model dam was prepared with a

plane strain condition. The model was constructed on

the shaking table using the Toyoura sand with water

content 5% (Fig. 3). The sand with predetermined

weight was poured on the shaking table with 5 cm

thick, and the layer was compacted by using a

vibrator to obtain the relative density of about 50%.

In order to measure the response of acceleration by

simulated earthquake, the accelerometer was embed-

ded in the predetermined layers at the central section.

The size of the model dam was 255 cm wide, 80 cm

high, 255 cm long, and the slope was 1:1.5 (Fig. 4).

The experiments were carried out at National

Research Institute of Rural Engineering. The simu-

lated earthquake has horizontal acceleration shown in

Fig. 5. The observed horizontal acceleration and

settlement at crest are shown in Figs. 6 and 7.

The sectional view of the model dam near the

central section after test is shown in Fig. 8. The

deformed shape after dynamic experiment was almost

symmetric. The slip bands were circularly generated

on both upstream and downstream slopes.

The elasto-plastic and viscoplastic analyses were

carried out. Figure 9 shows a finite element mesh of

the model dam. The material constants of Toyoura

sand used for calculation are as follows: Dr = 50%

(relative density), E = 9800 kN/m2 (Young’s modu-

lus), v = 0.3 (Poisson’s ratio), /r = 33� (residual

friction angle), er = 0.6, ef = 0.08, m = 0.6, shear

band thickness = 0.3 cm. Parameters for viscoplastic

analysis are the same as of Tatsuoka et al. (2002).

The computed horizontal accelerations of the

model dam from viscoplastic analyses are shown in

Figs. 10, 11, 12, and 13. The maximum shear strain

contour computed using viscoplastic model (constant

viscosity) is shown in Fig. 14.

The computed acceleration applying the visco-

plastic kinemaic hardening–softening model is iden-

tical to the experimental result but the computed

acceleration by TESRA is rather erratic. TESRA is

based on the experimentally obtained realistic non-

linear viscosity, so the viscosity is changing and this

causes some numerical instability. We need to

improve the numerical instability further, but any

Fig. 3 Picture of model dam

Measurement point of 

horizontal acceleration and 

vertical displacement at crest 

Fig. 4 Dimension of model dam
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way this model gives realistic average viscosity even

for applying the more numerically stable constant

viscosity model.

6 Undrained Triaxial Test Simulation

The simulation of triaxial tests by the finite element

method using one element was carried out with
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displacements of dam crest

Fig. 8 Sectional view after model experiment

Fig. 9 Finite element mesh of model dam
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kinematic hardening elasto-plastic constitutive

model. The dynamic relaxation method was applied

to this pseudo-static problem. The material constants

of sand used for calculation are as follows: Dr =

85%, v = 0.3, /r = 33�, er = 0.6, ef = 0.08,

m = 0.6, shear band thickness = 0.3 cm. Figure 15

shows the relations between stress difference and

axial strain and Fig. 16 shows the relations between

stress difference and mean stress when the applied

cyclic stress is 12 kPa. Figure 17 shows the relations

between stress difference and axial strain and Fig. 18

shows the relations between stress difference and

mean stress at applied stress of 14 kPa. We can see

that the phenomenon of cyclic mobility can be

represented successfully by this kinematic harden-

ing–softening elasto-plastic constitutive model.

7 Dynamic Response Analysis of a Pipe Within

Saturated Sand

The finite element analyses employing the cyclic

elasto-plastic and viscoplastic constitutive models

were applied to dynamic analyses of a two-dimen-

sional buried pipe problem. Figure 19 shows the

finite element mesh used for the analysis. The pipe

was buried within a saturated sand layer with relative

density of 85%. Figure 20 shows the horizontal

acceleration applied to the model experiment and

entered into nodes at the bottom of Fig. 19. Figure 21
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Fig. 10 Horizontal acceleration at crest by kinematic harden-

ing viscoplastic analysis (constant viscosity: g = 0.000002

s/kPa)
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Fig. 11 Horizontal acceleration at crest by kinematic harden-

ing viscoplastic analysis (constant viscosity: g = 0.000002

s/kPa: initial 3 s)
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Fig. 12 Horizontal acceleration at crest by kinematic harden-

ing viscoplastic analysis (TESRA)
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analysis (TESRA: initial 3 s)
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shows observed acceleration at the center on surface

of sand layer. The experiments were carried out at

National Research Institute of Rural Engineering.

The observed acceleration at the surface was not

necessarily accurate because just after initial accel-

eration, the exact direction of accelerometer could

not be maintained properly due to the liquefaction of

the sand layer. The observed uplift displacement is

shown in Fig. 22.

At first, the calculated displacement by the endo-

chronic theory which was combined with the elastic

and perfectly plastic model, to the buried pipe is

shown in Fig. 23. The densification of sand due to

cyclic shear strains has been modeled with endo-

chronic theory (Tanaka et al. 1986). The change of
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Fig. 19 Finite element mesh of buried pipe
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volume due to densification can be described by a

function of the form

de0 ¼
A

1þ Bj
dj ð38Þ

dj ¼ exp aE
1=2
2

� �
dn ð39Þ

dn ¼ 1

2
deijdeij

� �1=2 ð40Þ

deij ¼ deij �
dekk

3
dij ð41Þ

E
1=2
2 ¼ 1ffiffiffi

2
p e11 � e110
ð Þ2þ e22 � e220

ð Þ2
n

þ2 e12 � e120
ð Þ2

o1=2
ð42Þ

where eij0 is the reference strain at strain reversal

points and A, B, a are material parameters.

if e0�KBP

A ¼ 0:237� 0:374D2
r

B ¼ 159:3� 173:0D2
r

if e0�KBP

A ¼ 0:045þ 0:001Dr � 0:0446D2
r

B ¼ 6:12� 0:61D2
r

where KBP ¼ 0:02þ 0:729D2
r ; a ¼ 797:0:

Next, the elasto-plastic and viscoplastic (constant

viscosity) and TESRA models were applied. The

material constants of sand used for the calculations

are as follow: Dr = 85%, m = 0.3, /r = 33̊, er = 0.6,

ef = 0.1, m = 0.6, af = 3.0, rf = 0.5, b = 0.02,

ed = 2.0 and shear band thickness = 0.3 cm.

The calculated acceleration at the top of sand layer

by the TESRA model is shown in Fig. 24. The

calculated displacements by the kinematic hardening

elasto-plastic constitutive model, the viscoplastic

model (constant viscosity 0.00000001 s/kPa) and

the TESRA model are shown in Fig. 25.

The agreement between the kinemaic hardening–

softening constitutive models and experimental
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Fig. 21 Observed acceleration at the top of sand layer

Fig. 22 Observed displacement at the top of sand layer

Fig. 23 Calculated displacement at the top of sand layer

(endochronic theory)

Fig. 24 Calculated acceleration at the top of sand layer

(TESRA)
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results is rather good and these models give more

realistic displacements than endochronic theory.

8 Conclusions

The kinematic strain hardening–softening voscoplas-

tic constitutive relations for geomaterials were applied

to the dynamic progressive failure analysis of an

embankment dam. The Duvaut–Lions viscoplastic

formulation was used to solve the problem. The

viscoplastic constitutive relation for sand was shown

to be promising for the prediction of progressive

failure of the embankment dam. The kinematic

hardening model of soils was also applied to the

liquefaction analysis of a buried pipe. The calculated

accelerations and displacements were compared with

experiments. The agreement between the kinematic

hardening models and experimental results was good

for prediction of the displacements, but a lesser degree

of agreement was obtained for the acceleration.
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